看病难,看病贵?这不是中国特色,某种程度上美国比中国要严重得多。全球都面临着类似的问题。世界卫生组织估计,全球约有430万医生和护士的缺口。这种欠缺在不发达国家更为严重,而发达国家也面临医疗费用日益高昂的挑战。
资源缺乏带来的影响,往往体现在每个患者可以得到的诊疗时间。一项研究估计,美国医生在每个病人身上平均花费13-16分钟。而在国内,此前有报道称医生平均接诊时间4-6分钟,更有调查称:“门诊医生平均只肯听病人述说病情19秒”。
然而我们并不能据此过多指责医生,至少“量子位”遇到的医生绝大多数认真负责,候诊的病患每日数以百计,忙得中午饭都来不及好好吃。怎么办?
人工智能(AI)也许是解决之道。至少在以下五个方面,AI已开始发挥作用:
替医生做诊断
去年8月,老牌人工智能产品IBM Watson分析了数千个基因突变,最终确诊一位60岁的日本女性,患有一种非常罕见的白血病,并提供了适当的治疗方案,而几个月前她曾被医院误诊。Watson的整个诊断过程不到10分钟,如果换做人类医生,这个诊断需要耗时数周才能做到。
东京大学附属医院的Arinobu Tojo医生表示:“说AI拯救了她的生命可能有一点点夸张,但是AI确实非常迅速的给出了所需数据”。现在,Watson的肿瘤解决方案已经进入了21家中国医院。
在人工智能诊疗领域,除了Watson这样的成熟应用,还有活跃于学术界的各种创新研究。
在人工智能诊疗领域,除了Watson这样的成熟应用,还有活跃于学术界的各种创新研究。
比如说最近一期(第542期)Nature的封面,就是关于人工智能诊断皮肤癌的。斯坦福大学人工智能实验室在Nature发表论文展示了这一成果:他们用12.9万张皮肤病变的照片训练深度卷积神经网络,让它对皮肤损伤进行分类,诊断皮肤癌。这一算法的准确率达到91%以上,与人类皮肤科医生无异。未来,这种算法可以用于移动App,让用户在家就能自行拍照诊断皮肤癌。
国内的中山大学最近也有AI诊断方面的成果发表。该校科研人员在Nature biomedical engineering上发表的论文显示,他们开发的人工神经网络CC-Cruiser诊断先天性白内障的准确率,已经达到人类眼科医生的水平。这些科研人员表示,该技术未来也可以别用于诊断其他疾病。
机器学习技术也被用到了精神疾病的诊断中,比如说纽约大学Langone医学中心的Charles Marmar就在使用机器学习来挖掘语音中的特征,从而帮助医生来诊断PTSD(创伤后应激障碍),Sonde Health则用类似的方法来诊断产后抑郁,以及老年痴呆症、帕金森病等老年性疾病。
解读医疗影像
如果说AI替代医生做诊断,甚至给出治疗方案似乎还是巨头和科研界的游戏,离我们稍嫌遥远,那么人工智能帮医生解读医疗影像则是正发生在我们身边的现实,大量国内外创业公司涌入了这个热门的领域。
本文网址: