耗时三个多月,夜以继日撰写,马毅教授的综述文章《 On the Principles of Parsimony and Self-Consistency for the Emergence of Intelligence 》终于来了! 马毅教授表示:这篇文章把过去五年自己的工作以及智能七十多年的发展有机结合起来。并表示自己一生从未在一篇文章上花这么多精力和时间。希望这篇文章能对现在的研究方向和品味产生正面的影响。
在剩下的两节中,该研究对压缩闭环转录框架的普遍性提出了更多的推测性想法,并将其扩展到 3D 视觉和强化学习(第 3 节),预测其对神经科学、数学和更高层次的智能影响(第 4 节)。 通用学习引擎 3D 感知和决策被认为是自主智能系统的两个关键模块(LeCun,2022)。该研究推测,在这两个原则的指导下,研究者如何能够发展不同的观点和新的见解来理解这些具有挑战性的任务。 感知为压缩闭环转录?更准确地说,世界上物体的形状、外观甚至动力学的 3D 表征应该是我们大脑内部开发的最紧凑和结构化的表示,以一致地解释所有感知到的视觉观察。如果是这样,那么这两个原则就表明,一个紧凑和结构化的 3D 表征就是我们要寻找的内部模型。这意味着我们可以并且应该在一个闭环计算框架内统一计算机视觉和计算机图形,如图 10 所示。