如果 | Ci | 超过特定阈值,则可以认为在第 i 天,股票价格突变。 4.4 解释预测结果 为什么知识驱动事件是不具备 ML 专业知识的人识别股市突变的常规来源?这可以从两个方面进行解释:1)将知识驱动事件对突变预测结果的影响可视化;2)将知识驱动事件链接至外部 KG,进而检索事件的背景事实。 将知识驱动事件的影响可视化: 下图中的预测结果显示道琼斯工业平均指数趋势将下降。注意图中同色长条表示相同的事件影响,长条的高度反映了影响的程度,事件的流行性自左向右下降。直观来看,具备更高流行性的事件对股市趋势突变预测应有更大的影响,但事实并不总是如此。
事件对股市趋势预测的影响示例。 几乎所有负影响事件都与这两个事件有关,如 (British Pound, drops, nearly 5%) 和 (Northern Ireland, calls for poll on United Ireland)。 尽管一些事件对预测股市趋势上涨有着积极影响也具备高流行性,但整体影响仍是负面的。因此,股票指数波动出现突变可被视为事件影响和事件流行性的共同结果。 事件元组链接至 KG 后的可视化结果:
首先,搜索具备高影响或高流行性的事件元组;然后,回溯包含这些事件的新闻文本;最后,通过实体链接检索与事件元组相关的 KG 三元组。上图中,蓝色为事件元组,其中的实体与 KG 链接。 列出的这些事件元组字面上并没有强相关。但是,链接 KG 后,它们可以彼此建立关联,并与英国脱欧和欧盟公投事件产生强相关。通过集成事件影响的解释,我们可以证明知识驱动事件是突变的常规来源。 结论 循环网络在序列建模中的优秀效果可能大多是历史的痕迹。最近,扩张卷积和残差连接等架构元素的引入使得卷积架构不那么弱了。近期的学术研究表明,使用这些元素后,简单的卷积架构在不同序列建模任务上的效果优于循环架构,如 LSTM。由于 TCN 的清晰性和简洁性,Shaojie Bai 等人提出卷积网络应被看作序列建模的起点和强大工具。 此外,本文介绍的 TCN 在股市趋势预测任务中的应用表明,集成新闻事件和知识图谱后,TCN 的性能大幅超过 RNN。 参考文献 [1] Hollis, T., Viscardi, A. and Yi, S. (2020). “A Comparison Of Lstms And Attention Mechanisms For Forecasting Financial Time Series”. (https://arxiv.org/abs/1812.07699)[2] Qiu J, Wang B, Zhou C. (2020). “Forecasting stock prices with long-short term memory neural network based on attention mechanism”. (https://doi.org/10.1371/journal.pone.0227222)[3] Bahdanau, Dzmitry, Kyunghyun Cho, and Yoshua Bengio. (2020). “Neural Machine Translation By Jointly Learning To Align And Translate”. (https://arxiv.org/abs/1409.0473)[4] Bai, S., Kolter, J. and Koltun, V., 2020. “An Empirical Evaluation Of Generic Convolutional And Recurrent Networks For Sequence Modeling”. (https://arxiv.org/abs/1803.01271)[6] Deng, S., Zhang, N., Zhang, W., Chen, J., Pan, J. and Chen, H., 2019. “Knowledge-Driven Stock Trend Prediction and Explanation via Temporal Convolutional Network”. (https://dl.acm.org/doi/10.1145/3308560.3317701)[5] Hao, H., Wang, Y., Xia, Y., Zhao, J. and Shen, F., 2020. “Temporal Convolutional Attention-Based Network For Sequence Modeling”. (https://arxiv.org/abs/2002.12530)