论文地址:https://arxiv.org/abs/1904.10424
代码地址:https://github.com/ShengcaiLiao/QAConv
QAConv 训练时的网络结构如图 3 所示,包含骨干网络、QAConv 模块、类别记忆模块、全局最大池化(GMP)、BN-FC-BN 度量学习模块和损失函数。
在 BN-FC-BN 模块之后,我们采用了一个 sigmoid 函数将相似度分数映射到 [0,1] 区间,并计算二值交叉熵损失。由于负样本对比正样本对多得多,为了平衡样本分布同时在线挖掘难例样本,我们也采用了 focal loss 来加权损失。
本文网址: