AI中国网 https://www.cnaiplus.com
anokas 赢得了谷歌地标检索挑战赛,在 Reddit 上引起了非常多的讨论,大家都非常关心他的年龄以及是否有其他人帮助。不过在 anokas 的 Kaggle 主页中,他过去一年的活跃度非常高。虽然 anokas 这次与他的爸爸组成团队在图像检索挑战赛中获胜,但在他参与的 50 项挑战赛中有 40 项都是单独完成的。
anokas 两年前就已经开始参加 Kaggle 竞赛,在完成的 48 项竞赛中,他一共获得了 5 块金牌、7 块银牌和 5 块铜牌。除了这一项地标图像检索,他还获得了谷歌云与 YouTube-8M 视频理解挑战赛的第七名。以下是他排名比较靠前的竞赛:
除了上述获得的荣誉,anokas 昨天还在 Kaggle 分享了他们获胜的方案,如下将介绍这一份解决方案。
以下是我们团队在竞赛中所使用解决方案的细节总结,我们的解决方案包含两个主要的组件:第一个是创建一个高性能的全局描述子,以用奇异值向量表征数据集中的图像,第二个组件即构建一个高效的策略以匹配这些向量,从而搜索到最可能的匹配条目,并提交到排行榜。
下图展示了整体的流程图,在每一个应用步骤中都标记了 LB 分数,后面我们详细介绍这些步骤。
全局描述子
我们解决方案的主要部分涉及到一些全局描述子,它们是描述整体图像的向量。整体架构首先从两个预训练的 CNN 模型开始(ResNet 和 ResNeXt),然后使用四种顶尖的聚合方法以从这些模型生成全局描述子。以下是每种方法及它们「原始」性能的简要细节,原始性能即不带
AI中国网 https://www.cnaiplus.com
本文网址: